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1. Introduction

There have been only a few parametric models extensively examined

for application to reliability; these include the exponential.distri-

bution of Epstein-Scbel [6], the Weibull distribution [14], and the

fatigue model of Birmbaum-Saunders [4]. The one most widely utilized

for electronlc components has been the exponential model, not only
because of its simple and intultive properties but also because of the

extent of the estimation and sampling procedures which have been develcped

from the theory.

Cne of the early discoveries was that mixtures of exponentially
distributed random variables have a decreasing failure rate, see [11].
3 Thus any two groups of components with constant, but different, faillure
rates would, if mixed and sampled at random, exhibit a decreasing failure

rate. As a consequence, the family of life lengths with decreasing

- W o

failure rate certainly arises in practice and particular subsets of this

family could be of great utility for specific applications, see e.g.

Cozzolino {5]. We examine one such model with shape and scale

parameters, call them a and B respectively, which'ls based upon a

» particular mixture of exponential distributions., This family was intro- 4
duced by Afanas’'ev [1] and later by Lomax [10] as a generalization of a

Pareto distribution. Section 3 compares this mixed exponential

distribution to the exponential distribution using data from Poseldon
flight control packages.

Kulldorff and Vnmman (9] and Vinrman [13] have studied a variant

of this mixed exponential model containing a location parameter. They
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obtalned a best linear unbiased estimate of the scale parameter
assuming that the shape parameter, call it «, was known and in a

reglon restricted so that both the mean and the variance exlst, namely
@ > 2. When this restriction of @ > 2 cannot be met an estimate based
on a few order statistics, which are optimally spaced, 1s claimed

to be an asymptotically best linear unblased estimate and tables

of the weights as functions of the number of spacings are provided. 1In
all cases, the shape parameter was assumed known and the sémple was
either complete or type II censored. It is contended that BLUE

estimates of the shape parameter are not attainable.

Harris and Singpurwalla [7] examined the method of moments as an
estimatlon procedure for this same model but again with the shape

parameter restricted toa > 2 and with a complete sample.

In both papers [9] and (7], it is stated that maximum likelihocd
estimates are difffcult to cbtain. In a later paper Harris and
Singpurwalla [8] exhibit the maximum likelihood equations for complete

samples,

In this paper the maximum likelihood estimates for both the shape
and scale parameters are obtained, jointly and sepérately, with simple
sufficient conditions given for their existence. These estimates are
derived for censored data (and a fortori for complete sanples) even with

a paucity of fallure observations, namely one.

The exdstence conditions obtained here for the maximum likelihcod
estimates apply even to the case where the variance and possibly the

mean do not exdst: 0 <a < 2. Moreover, the estimates of the shape
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parameterr a which have been obtained from actual data indicate that

this rezion 0 <o < 2 1s important because all the estimates obtained

of o have beer: less than unity.

2. The Model

We postulate that the underlying process which determines the length
of 1life of the component under consideration is the following: The
quality of construction determines a level of resistance to stress which
the component can tolerate. The service envirorment provides shocks
of varying magnitude to the component,and faillure takes place when for
the first time the stress from an environmentally induced shock exceeds

the strength of the component.

If the time between shocks of any magnitude is exponentilally
distributed with a mean depending upon that magnitude then the life
lengtin of each comﬁéhent will be expodéntially distributed with a Tailure
rate which 1s determined by the quality of assembly. It follows that
each component has a constant fallure rate but that the variability in
manufacture and inspection techniques forces some components to be

extremely good while a few others are bad and most‘are in between.

Let Xl be the life length of a component 1in such a service
environment, with a constant fallure rate A which 1s unknown. The
variability of manufacture determines various percentages of the A-values

and this variability can be described by some distribution, say G.

e AT N oy R -



Let T be the life length of one of the components which is
selected at random from the population of manufactured components.

We denote the reliability of this component by R and we have

R(t) = P[T > t] for t >0 .

Let A be the random variable which has distribution G. We

can write

(-]

R(t) = E,P[x> t[A = =) e Macn . (1)
Q

Because of having a form which can fit a wide variety of practical
situations when both scale and shape parameters are disposable, it is

assumed that G 1s a gamma distribution, i.e., for some o > 0, B > 0.

Xa—le-k/ﬁ
g(\) S for X > 0.
‘T(a) B
That this assumption is robust, even when mixing as few as filve
equally weighted A's, has been shown by recent work of Sunjata in an
unpublished thesis [12]. It follows from equation (1) that the reliability
function 1s ‘ l |

R(t) = —I—— = ¢7@ fn(lvep) . C(2)
(1+tB)

The fallure rate, hazard rate, can be shown to be

a(t) = l—f—% , (3)

which 1s a decreasing fﬁnction of £ > 0.

e



Maximum likelihocd estimates for a ,8 and hence R(t) and q(t) are

given in Section 5.

3. A Comparison of the Mixed Exponential with Exponential Using Real Data

Data has been accumulating for years in the assessment of the
reliability of electronic equipment for which there was no adequate
statistical model. The following difficulties were recognized by
practitioners: 1. The assumption of constant or increasing fallure rate
seemed to be incorrect. 2. However, the design of this electronic
equipment indicated that individual items should exhibit a constant
failure rate. A mixed exponential 1life distribution accounts for both
the design knowledge and the observed life lengths. Maximum likelihcod
procedures allow for joint estimation of the parameters of this

distribution in the most commonly encountered situatilion where complete

data is not available. . ¥

We now give some actual data sets from two different lots of
Poseldon flight control electronic packages which 1llustrate these
points., Each package has recorded, in minutes, either a failure time %
or an alive time. An alive time is sometimes called a "run-out" and

1s the time the life test was terminated with the package still functicning.

First Data Set

Failure times: 1, 8, 10

Alive times: 59, 72, 76, 113, 117, 124, 145, 1h9, 153, 182, 320.

Second Data Set

Failure times. 37, 53

Alive times: 60, 64, 66, 70, T2, 96, 123.

e e 4 O T g g ¢ 8 Y



If we assume that the data are observations from an expenential
distribution (constant failure rate A) then using the total life
statistic, we have the estimates of reliability given in the left
hand side of the table. If we assume that the data are observatlons
from the mixed exponential distribution of equation (2) then using
estimation techniques derived subsequently in this paper we have the

estimates for reliability given in the right hand side of the table.

Exponential estimate Mixed exponential estimate
of reliability of relisbility
time t set 1 Set 2 | Set 1 Set 2
in min. Rl(t) Rz(t) Rl(t) Rz(t)‘
6 .988 .981 .915 976
; 10 .980 .969 .896 .961
- 30 .943 911 855 .896
50 .906 .856 . - .836 . 843
100 .821 - .810 e
130 .T74 . - .801 - {
e .00017 .00312 &: .0453 - . 420
B: 1.03 .01

Lookdng at the data from the two sets we would expect that at least for
the first fifty minutes the reliabillity estimate for thé second set of

data would be higher then the reliability estimate for the first set of

data, because in the first set 3 failure out of 14 trials have occurred
in the first ten minutes while in the second set only 1 failure out of 9

trials has occurred in the first fifty minutes. However, under the




exponential assumption the reliability estimates for the first data set
are consistently higher. Note that the mixed exponentlal estimates

are more consistent with what the data show; that is, for at least the
first 50 minutes we expect the reliability estimate for the second set
of data to be higher than the reliability estimate for the first set

of data. Beyond thls time, however, say at 100 minutes, the data
indicate that the reliability estimate from the first set of data should
be higher than the relisbillity estimate from the seccnd set of data.

Using mixed exponential estimates this is the case.

A statlistical test to determine whether the data require a2 constant
or decreasing failure rate was run on the data from Sets 1 and 2. For
data Set 1 we reject constant fallure rate in favor of decreasing fallure
rate at the .10 level. For data Set 2 we camnot reject the constant
fallure rate assumption. In this case, however, the constant fallure
rate estimates for reliability and the mixed exponential estimates for
reliability are close. For data Set 2 cne should not estimate
rellability much beyond about 70 minutes since we do not have data to

support those estimates.

4. Residual Life Property of the Model

An important property of this model is that residual 1life on a
component is distributed as a mixed exponential. Thus a '"burn—in"
test of a component will yield a residual 1ife which is also in the same
family. This property seems to be shared only with the expcnential among
common parametric families of life distributions.




The residual life 'I‘h of a component is defined to be the life
remaining after time h, given that the component is alive at time h.

It can be shown that:

A bum-in for h units of time on a component with initial
life determined by a mixed exponentlal distribution with parameters .

a ard B8 will yield a residual life Th and will be destributed as a

mixed exponential with parameters a and 8
- 1 +Bh

It follows that this life length model is "used better than new"
or "new Worse than used" in the sense that we have stochastic

inequality between a new compcnent and one that has been burned in,

namely
st
T §_Th for all h>a0.

:g An important consequence of thls property is that one can calculate
ki the value of the increased reliabiliﬁy attained by burn-in procedures
as compared with the cost of conducting them. It has long been the
practice to burn in electronic components based on intultive ideas of
"infant mortality" in order to provide reascrable assurance of havirg
detected all defectively assembled units. This hodel, whenever 1t 1s
applicable, makes possible an economic analysis. A veriation of this

result has been discussed in [3].

Example

As an exanmple of the applicabllity of this property, consider test
data from Trident flight control packages.

RNV epnv——




Assume that bum-in data is distributed as a mixed exconential
with shape parameter o and scale parameter 8. These parameters were

estimated (formulas in Section 5 ) to be

Q= .57
8 = .010Y - ;
f 14 u8)(60)8
_— Burn-in ——

//////;4 48 hours

L}

.57
.0104

>R >

After U8 hours of burn-in the residual 1life TUS hour's should be mixed

' exponential with parameters o and 8 . The first graph shows \
~ 1+2B808 §
the change in Bf as a function of bum-in hours. The second grarh ‘
i
shows the change in estimated reliabilities at 20 minutes as a function ‘
L 4

of burm-in time, where reliability at time 20 minutes is estimated to

be -
R(¢) = [1 + 208,]" o

~

Bf decreases as burm-in time increases.

T AREEN LA, S R T T e v ey i
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Data consistent with success and fallure data was obtained from another test
called Pre-Test. We assume that the time to failure T of flight control
packages subjected to this type of test environment follows a mixed

exponential distribution with shape parameter o and scale parameter

R S L PR O DT

8. Using Pre-Test data these parameters were estimated (formulas in

& Section § ) to be

a = .5739
g = ,1106
|
;
' —_— Pre-Test y
*
60 minutes
a = .5739
’ ~
B = .1106
, After 60 minutes of test the residua%\life T60 should be a mixed !
exponentlal with parameters o and S - . We estimate these
1+608
parameters by
) a = .5732
3} - B - .1106 = .OLl5

148 1 + 60(.1106)

Rl s Ao AR 1 3. 13 ) A
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& = .5739
g = .1106
R(1) = .94

Pre-Test

t = 60 min

~

Sinee R(t) = (1 + st)*l, we estimate reliability at 1 minute for a package

ﬁg (60) = [1 + (.1206)(1)T*5739 = .9y

.which has not gone through Pre-Test to be

We estimate reliability at 1 minute for a package which has gone through

Pre-Test to be

RBf

Note that these reliabilities are for Pre-Test envirorments.

(60) = [1 + (.0145)(1)T" 5739 = .g9




Now consider the entire screen test scheme for Trident flight control

Note:

All Job Stack tests are the same.

packages.
Post
Pre-Test No. 1 Burn-In
—> Burm-In (Job Stack) i
(Job Stack) k
No. 1 Post Post No. 2
Temp —> Temp.Cyc. H Closure Temp. 7
Cye. (Job Stack) (Job Stack) Cye.
Te Posgyc Shock ISDOZ;C} Pressure
—f TP WC L 5| vibration |—% &V Altitude |—
(Job Stack) (Job Stack)
Post Post No. 2
P.&A. No. 2 Burm-In :
(Job Stack) (Job Stack)
Final
ATP
—
(Job Stack)




1y

Effects of various environmental or burm-in tests (in the sense of
reliability gain) can be estimated by comparihg reliability estimates forecast
at the end of the Job Stack which proceeds the envircnment to reliability

estimates for the Job Stack which follows the envirorment. For example

Bfl
|
Post
Burm-In
——|  Pre-Test — Burn-In — S
3 (Job Stack) (Job Stack)
T t = 60 min
! i
~ 8
- 2
o .
o a is fixed at o

If burmm-1in 1s effective then we would expect that
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5. Estimation of Parameters with Censored Data

Let us assume throughout this section that we are given

t .,tk as observed times of failure while t t are

1’.. k+l,...,n
observed allve-times both obtained from a mixed exponential ( a,B )

1life distribution with 1 = k = n. We define two functions for x > 0.

n _
sl(x)_ = I 2n(l+tix) , S, {x) =

1

"t

-1
l(l+tix)

A result on the maximum likelthood estimation (m.l.e.) of the unknown

parameters 1s now gliven which utilizes data of this type.

Theorem: Under the assumptions and conditions given

(1) When g > 0 1s known, there exists a unique

~

m.l.e. of o« , say a ,. .given explicitly by
(ii) When « > 0 1is known, there exists a unique
m.l.e. of B8 , say E‘, given explicitly by
g = A™l(0)
where A 1is the monotone decreasing function
defined by
1
A(x) = kSZCX) - axSl(x) for x> 0

. s M’mm«l :




&
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with primes denoting derivatives.

(iii) When «a,8 are both unknown, the m.l.e. of B8 ,

say g » 1is given implicitly, when it exists
positively and finitely, by
B = B7l(0)
where B is tﬁe function defined by
S,(x) Sy (%) :
= - §]75€T for x> 0

~

and the m.l.e. of a , say a , is given expli-

B(x) =

citly by

-~
Q

%/, (8)

Theorem: The inequg;;ty for 1 k=n
. k n n )
X Z«ti z% < Z €5 O

is a sufficient condition which a (censored) sample from a mixed
exponential (a,8) distribution must satisfy in order that maximm

likelihood estimators of both parameters exist both posltively and finitely.

T
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6. Computational Considerations

' The question which now arises 1s: what kinds of samples will
satisfy condition (4)? If k = n we see (4) 1s equivalent with
n n n )
| COMIEE IR
1 1 1
from which we have the

Remark: A complete sample of failure times will satisfy (4) if the

sample standard deviation exceeds the sample mean.

Tt can be shown that if T has a mixed exponential (a«,B8) distribution
then

E [T] = (Bl-1)] ™1 for a>l

Var [T] =0L[82(a-1)2(a—2)2]-1 for a>2 “

Thus the standard deviation does exceed the mean for thcse values of the

parameters where the mean E[(T] and the variance, V[T], exist.

Remark: A sample with k < n failure times and the remaining n-k

observations truncated at to will satlsfy (4) 1if

[2K 2n-k '
ty 2 nl[l + ok + 1 ] *ny o for n  large

where n, = (tl+...+tk)/k is the average failure time.

In the calculation of B the equation, C(B) = 0, must be solved where
1
c(B) = BSl(B)Sz(B) or

n k
c(s) = Ei - S s D 2
l+t B = J i=ll+t18
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where tl""’tk are failure times and tk+1""’tn are censored life

times. We introduce notation for the sample moments as follows:

S

k n '
1
nr = -k- z tir ’ Cr = Z tjr for r = 112:3»"°1 (3)
i=1 . j=1 ' |

then using the two expansions, valid for x| <1 ,

2

3 .
X X
T e -i%-i- = 1 -x+ x" - ...

2n(l+x) = x - S5+

and substituting into C and simplifying we find, upon neglecting

terms of third order in B8 , <that
8. B 2 E
(1+n 8o B) (5102, 7 *057) = [81-8,8%5587] = 0 :

Multiplying the first two together and'collecting terms yields

4
2 UERS
. (T - ﬂlcl)ﬂ - (;3 - HZCl = —17—2—)62 = 0

We now notice that the condition equation (4), can be written in the

notation of (5) as %, > an %y .

Thus our computational procedure to decide upon the parametric

representation of the distribution governing the cbservatlons which have

' been cbtained 1s contsined in the following.

AMlgorithm: Given I T IRD) tk as feilure times and t..;,. . . tn as

censored times from a mixed exponential (x,B) distribution

(1) Compute the sample moments nl; ICYRSTR Y 53-
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(1) 1Ir &y < 2n, g, assume observations from a constnat fallure rate

distribution and estimate A by

k
nCl

A=

(114) 1If &, > 2n,g,, assume observations are from a mixed exponential

distribution and compute

Bg =
- Y -
S TCU PLEE I P
then use the Newton-Raphson interation brocedure, namely

forn=20, 1, 2,

; ] c(p,) .
= = ———, B = 1lim B_ , and
n+l n C'(ﬁn) n o = n
. § = — k !
n - ' ;
Z en(l+t @) 1
J=1 J |

Practical experience indicates that the iteration converges very

rapidly. Since the functions are very simple a small programmable
electronic calculator, such as the HP-65, can be used to cbtain these

estimates. Programs for the HP-65 and HP-97 are available from the
authors, }
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7. Conclusion

If a comporent has a life distribution with an increasing
failure rate, the information necessary to estimate 1ts parameters
must contain fallure times. In practice this means that virtually
no observed failures, within a fleet of operational components, provide

little information with which to assess rellability.

If a component has a constant failure rate then both failure
times and alive times contribute equally to its estimation. The
preceeding study suggests that 1f a comporent has a life distribution
with decreasing failure rate it is the alive times within the data

which contribute principally to the estimaticn of the parameters.

The problem of obtaining the usual sampliné distributions of
the maximum likelihood estimators ol the parameters for the decreasing
failure rate model studied seems to be difficult because the estimates
are only implicitly defined. We have shown, however, that whep they
exist the MLE's fora and B, based on type I or on randcm censoring,
are asymptotically normally distributed, We have also shown that the
distribution function estimated using the joint MLE's of the parameters
1s surprisingly closer to the true distribution for reglons bf interest
in reliability theory, than 1s the estihated distribution function

using a BLUE-k estimate for the scale parameter and a known shape parameter.
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